Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(4): 916-951, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224023

RESUMO

Two-dimensional nanomaterials (2D NMs) refer to nanomaterials that possess a planar topography with a thickness of one or several atomic layers. Due to their large specific surface areas, atomic thickness, rough edges, and electron confinement in two dimensions, they have emerged as promising antimicrobial agents over antibiotics in combating bacterial infections. However, 2D NMs encounter issues such as low bio-safety, easy aggregation, and limited tissue penetration efficiency. To address these concerns, hydrogels with three-dimensional (3D) networks have been developed to encapsulate 2D NMs, aiming to enhance their biocompatibility, biodegradability, and ability to regulate and remodel the tissue microenvironment at the infected site. This review systematically summarizes the current studies on 2D NM-based antibacterial hydrogels with 3D network structures (named 2N3Hs). Firstly, we introduce the emerging types of 2N3Hs and describe their antibacterial actions. Subsequently, we discuss the applications of 2N3Hs in three biomedical fields, including wound dressing, cancer treatment, and bone regeneration. Finally, we conclude the review with current challenges and future developments for 2N3Hs, highlighting their potential as a promising choice for next-generation biomedical devices, particularly in the field of tissue engineering and regenerative medicine. This review aims to provide a comprehensive and panoramic overview of anti-infective 2N3Hs for various biomedical applications.


Assuntos
Anti-Infecciosos , Nanoestruturas , Hidrogéis/química , Nanoestruturas/química , Medicina Regenerativa , Engenharia Tecidual , Antibacterianos
2.
Waste Manag ; 124: 36-45, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33601176

RESUMO

Thermal hydrolysis (TH) treatment has been verified to effectively reduce antibiotic resistance genes (ARGs) in waste activated sludge. This study focused on the effect of TH parameters on ARGs reduction, and the optimal conditions basing on tetracycline (tet) resistance genes reduction rate in sludge phase were pH 3, temperature 160 °C and reaction time 2 h. The pH was found to play a critical role in tet genes reduction behavior. Additionally, the tet genes distributions in TH supernatant are considered as well because genes will release from solid to liquid phase as sludge cell breaking. The lowest genes content in TH supernatant was also observed at pH 3. Further investigation revealed that contents of DNA and organics released from sludge phase to liquid phase under pH 3 were less than that in neutral and alkaline condition; moreover, the organics in TH supernatant was found to protect DNA. Therefore, under the acidic condition, the genes had less releasing from the sludge phase and the DNA protection effect of organics was weaker, resulting in the lowest tet genes content in TH supernatant. Moreover, bacterial community structure after TH was closely related with the ARGs content. The bacterial on phylum and genus level showed various responses to TH pH values. Although the Firmicutes phylum and Escherichia-Shigella genus exhibited the stronger resistance and had higher accumulation in TH acidic condition, more possible total tet genes hosts were destroyed in acidic condition, causing less ARGs remaining in the sludge phase under pH 3.


Assuntos
Esgotos , Resistência a Tetraciclina , Antibacterianos/farmacologia , Genes Bacterianos , Concentração de Íons de Hidrogênio , Hidrólise , Resistência a Tetraciclina/genética
3.
Water Res ; 148: 344-358, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391863

RESUMO

Textile dyeing wastewater is characterized by low biodegradability and high nitrogen strength, which is difficult to meet the increasingly stringent discharge requirements. Therefore, the tertiary nutrient and refractory organics removal is considered and aerated biofilter is often adopted. However, the aerobic condition and carbon source shortage restrict tertiary biological nitrogen removal. In this study, iron scrap was introduced as the filter medium to enhance the pollutant removal capacity, and three aerobic biofilters were constructed. Biofilter Fe-CE was filled with iron scrap and ceramisite; biofilter Fe-AC was added with iron scrap and granular activated carbon, and biofilter CE only had ceramisite to pad as control system. After the biofilters were acclimatized by synthetic wastewater and actual dyeing wastewater, the optimal operation parameters based on nitrogen removal were determined as pH 7, gas-water ratio 5:1, hydraulic retention time 8 h and C/N ratio 8.5:1. The iron scraps improved total nitrogen (TN) removal significantly, with TN removal efficiency of 68.7% and 57.3% in biofilter Fe-AC and biofilter Fe-CE, comparing with biofilter CE of 29.9%. Additionally, phosphorus and COD had better removal performance as well when iron scrap existed. Further investigation interpreted the reason for iron's facilitating effect on tertiary nutrient and refractory organics removal. The introduction of iron scrap made the habitat conditions such as pH values, DO concentrations and biomass contents inside the biofilters change towards the direction beneficial for pollutant elimination especially for nitrogen removal. In iron containing biofilters, the majority of nitrogen, phosphorus and organic pollutants were removed in the iron scrap layers, and more pollutants types appeared, implying that iron triggered pollutants to go through more diverse degradation or transformation pathways. Moreover, the phylum Proteoabcteria dominated in samples of ceramisite-containing biofilters, with abundances more than 40%. The iron scrap existence increased the abundances of phyla Bacteroidetes and Firmicutes, and triggered higher abundance of denitrification bacteria.


Assuntos
Águas Residuárias , Purificação da Água , Filtração , Ferro , Nitrogênio , Nutrientes
4.
Environ Sci Technol ; 52(3): 1404-1412, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29298384

RESUMO

Simultaneous nitrification and denitrification (SND) is a promising single-reactor biological nitrogen-removal method. Activated sludge with and without iron scrap supplementation (Sludge-Fe and Sludge-C, respectively) was acclimated under aerobic condition. The total nitrogen (TN) content of Sludge-Fe substantially decreased from 25.0 ± 1.0 to 11.2 ± 0.4 mg/L, but Sludge-C did not show the TN-removal capacity. Further investigations excluded a chemical reduction of NO3--N by iron and a decrease of NH4+-N by microbial assimilation, and the contribution of SND was verified. Moreover, the amount of aerobic denitrifiers, such as bacteria belonging to the genera Thauera, Thermomonas, Rhodobacter, and Hyphomicrobium, was considerably enhanced, as observed through Miseq Illumina sequencing method. The activities of the key enzymes ammonia monooxygenase (AMO) and nitrite oxidoreductase (NXR), which are associated with nitrification, and periplasmic nitrate reductase (NAP) and nitrite reductase (NIR), which are related to denitrification, in Sludge-Fe were 1.23-, 1.53-, 3.60-, and 1.55-fold higher than those in Sludge-C, respectively. In Sludge-Fe, the quantity of the functional gene NapA encoding enzyme NAP, which is essential for aerobic denitrification, was significantly promoted. The findings indicate that SND is the primary mechanism underlying the removal of TN and that iron scrap can robustly stimulate SND under aerobic environment.


Assuntos
Desnitrificação , Nitrificação , Reatores Biológicos , Ferro , Nitrogênio , Esgotos
5.
Environ Technol ; 39(19): 2447-2456, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707517

RESUMO

Triclosan (TCS) is widely used in household and personal care products, and its release into wastewater might have impact on wastewater biological treatment for its antibacterial property. Besides, emerging pollutant such as copper nanoparticles (CuNPs) will also release from nanoparticle-containing products, showing a joint effect with TCS on biological nutrient removal. The TCS of 1 and 10 mg/L inhibited the nitrosification and nitrification stage, and the first step of denitrification was suppressed as well, causing a decline in final TN removal efficiency. Additionally, the phosphorus uptake was inhibited seriously, leading to a remarkable decrease in phosphorus removal efficiency. When they were co-existed, the TCS concentration decreased due to the absorption by CuNPs, and the released Cu2+ from CuNPs increased. Further investigation revealed that when 5 mg/L CuNPs and 1 mg/L TCS were immediately added to the activated sludge, the final joint toxicity was similar to the individual effect of 1 mg/L TCS, while 10 mg/L CuNPs contributed to the final stronger toxicity. When TCS was sufficiently reacted with CuNPs in wastewater, their final toxicity to activated sludge was enhanced because the extent of toxicity relief caused by decrease in TCS concentration was less than the degree of deteriorating effect due to the promotion of Cu2+ release from CuNPs.


Assuntos
Nanopartículas , Triclosan , Cobre , Nutrientes , Esgotos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...